English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Experimental Botany 2007

The ectopically parting cells 1-2 (epc1-2) mutant exhibits an exaggerated response to abscisic acid.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Lindsay Bown
Shinnosuke Kusaba
Florence Goubet
Lesley Codrai
Aaron G Dale
Zhinong Zhang
Xiaolan Yu
Karl Morris
Tadashi Ishii
Carol Evered

Keywords

Abstract

The ECTOPICALLY PARTING CELLS 1 (EPC1) gene encodes a putative retaining glycosyltransferase of the GT64 family, and epc1-1 mutant plants have a severely dwarfed phenotype. A new mutant allele of this gene, epc1-2, has been isolated. Reduced cell adhesion that has previously been reported for the epc1-1 mutant was not observed for either the epc1-1 or epc1-2 mutants grown in our conditions, suggesting that EPC1 does not affect cell adhesion but is involved in some other process affecting plant growth and development. It is shown that the epc1-2 mutant exhibits hypersensitivity to the phytohormone abscisic acid in germination and root elongation assays, however it shows an unaltered response to gibberellin, epi-brassinosteroid, auxin, or ethylene. An EPC1:YFP fusion protein is localized to small motile structures within the cytosol that are similar in size and number to the Golgi apparatus. Analysis of cell wall pectins revealed that levels of beta-(1,4)-galactan in the epc1-2 mutant are reduced by 50%, whilst other pectic polysaccharides (homogalacturonan, arabinan, and rhamnogalacturonan II) are unchanged.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge