English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Developments in biological standardization 1992

The effects of formulation and moisture on the stability of a freeze-dried monoclonal antibody-vinca conjugate: a test of the WLF glass transition theory.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
M L Roy
M J Pikal
E C Rickard
A M Maloney

Keywords

Abstract

Deacetylvinblastine (DAVLB) hydrazide, a cytotoxic vinca alkaloid, has been linked to the monoclonal antibody, KS1/4, via aldehyde residues of the oxidized carbohydrate groups on the antibody. The resulting KS1/4-DAVLB hydrazide conjugate is unstable in solution with both the acyl hydrazone linkage and the vinca moiety being subject to significant degradation, even at 5 degrees C. This necessitated the development of a freeze-dried formulation of the antibody-drug conjugate. Formulation factors considered were pH, ionic strength, buffer, excipient types, and excipient ratios. A formulation with equal weight ratios of mannitol, glycine, and conjugate in a low ionic strength phosphate buffer at near neutral pH was selected. Stability was studied at various moisture levels (1.4%, 3.0%, and 4.7%) and temperatures (5 degrees C, 25 degrees C, and 40 degrees C). Degradation was measured by size exclusion HPLC (aggregate formation) and by reverse phase HPLC (hydrolysis of hydrazone linkage and vinca decomposition). Differential scanning calorimetry (DSC) indicated that all samples were above their glass transition temperatures, Tg, when stored at 40 degrees C. When stored at 25 degrees C, only the highest moisture sample was initially above its Tg. However, due to crystallization of the excipients during storage and the resulting decrease in Tg, samples stored at 25 degrees C were also above their Tg during much of the storage period. The degradation rate, R, increased sharply with increasing temperature and with increasing moisture level. Degradation kinetics obeyed the Williams-Landel-Ferry relationship, R/Rg = exp[k(T-Tg)], where Rg is the degradation rate at Tg. For all three moisture levels and all three degradation pathways, k = 0.143.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge