English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Signaling and Behavior 2008-Sep

The electrical response of Phaseolus vulgaris roots to abrupt exposure to hydroquinone.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Christopher P Keller
Richard R Barkosky
Joshua E Seil
Shanna A Mazurek
Morgan L Grundstad

Keywords

Abstract

Previous reports have suggested the primary mode of action of the allelochemical hydroquinone involves disruption of root cell membrane transport. Here we report the effects of hydroquinone on common bean (Phaseolus vulgaris) plants. Growth of leaves, roots and stems were all inhibited by 14 day exposure to 0.01 mM or 0.25 mM hydroquinone. Chlorophyll fluorescence (Fv/Fm) was inhibited by 0.25 mM hydroquinone. The membrane potential of P. vulgaris root cortex cells briefly hyperpolarized and subsequently slowly transiently depolarized upon abrupt exposure to a range of hydroquinone concentrations. Both the hyperpolarization and depolarization were concentration dependent but appeared saturable. Root cells exposed to 0.03 mM hydroquinone hyperpolarized 3.4 mV (+/- 0.6 s.e.) 3 minutes after the start of exposure then depolarized 36.7 mV (+/- 3.9) with no effect evident after 24 hours. Individual recordings showed a response to as little as 0.001 mM hydroquinone. Exposure of P. vulgaris root cells to arbutin, a nontoxic monoglucoside of hydroquinone, produced a similar but much smaller (approximately 25%) electrical response. Exposure of root cells of Antennaria microphylla, a known allelopathic source (donor plant) of hydroquinone, also produced a much smaller hyperpolarization and depolarization response. It is concluded that the electrical response to hydroquinone by P. vulgaris root cells and the changes in membrane transport they represent are not sufficiently large or long lasting enough to disrupt mineral and water uptake leading to plant injury. The possibility, however, that these events are related to initiation of signal transduction events leading to cell death is discussed.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge