English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Cancer Research 2008-May

The estrogen receptor pathway in rhabdomyosarcoma: a role for estrogen receptor-beta in proliferation and response to the antiestrogen 4'OH-tamoxifen.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Joshua A Greenberg
Stig Somme
Hege E Russnes
Adam D Durbin
David Malkin

Keywords

Abstract

Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children. Highly malignant, RMS frequently fails to respond to conventional aggressive multimodal radiation, surgery, and chemotherapy treatment protocols that also cause significant sequelae in the growing child. Other tumors of mesenchymal origin, such as locally aggressive fibromatoses and desmoid tumors, have been successfully treated with a selective estrogen receptor (ER) modulator, tamoxifen. In an effort to identify new targets for RMS therapy, our group investigated the previously uncharacterized ER pathway in RMS cell culture and primary tumors. We detected ER isoform beta (ER beta), but not isoform alpha, RNA, and protein in five RMS cell lines. Immunohistochemical staining of primary RMS tumor sections confirmed high levels of ER beta but not ER alpha protein. RMS cell growth was dramatically inhibited in steroid-free conditions, and this growth inhibition was rescued with 17-beta-estradiol (E2) supplementation. Exposure of RMS cells to 4'OH-tamoxifen (4OHT) decreased cell viability and inhibited colony formation as detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and colony-forming assays. 4OHT also induced apoptotic signaling in RMS cells as detected by cleavage of caspase-3 and poly(ADP)ribose polymerase. This effect increased 3- to 8-fold in steroid-deprived conditions but was rescued by supplementation with E2. Immunofluorescence studies detected a change in the subcellular localization of ER beta in response to 4OHT. Together, these data suggest an active ER beta-mediated signal transduction pathway in RMS. The ability of 4OHT to induce apoptotic signaling and disrupt estradiol-mediated proliferation provides a rationale to explore a role for selective ER modulators in the treatment of RMS.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge