English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Plant Physiology 2010-Jul

The gene encoding the catalytically inactive beta-amylase BAM4 involved in starch breakdown in Arabidopsis leaves is expressed preferentially in vascular tissues in source and sink organs.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Perigio Francisco
Jing Li
Steven M Smith

Keywords

Abstract

Genetic studies in Arabidopsis thaliana have shown that two members of the beta-amylase (BAM) family BAM3 and BAM4 are required for leaf starch breakdown at night. Both are plastid proteins and while BAM3 encodes an active BAM, BAM4 is not an active alpha-1,4-glucan hydrolase. To gain further insight into the possible function of BAM4 we constructed reporter genes using promoters for both BAM3 and BAM4 genes, driving beta-glucuronidase (GUS) and luciferase (LUC) expression in transgenic Arabidopsis plants. Both promoters directed expression in vascular tissue throughout the plant including cotyledons, leaves, petioles, stems, petals, siliques and roots. Tissue sections showed expression to be focused in phloem cells in stem and petiole. The BAM3 promoter was also expressed strongly throughout the photosynthetic tissues of leaves, sepals and siliques, whereas the BAM4 promoter was not. Conversely, the BAM4 promoter was active in root tip but the BAM3 promoter was not. To confirm these expression patterns and to compare with expression of other starch genes we carried-out RT-PCR analysis on RNA from vascular (replum) and non-vascular (valve) tissues of siliques. This confirmed that BAM4 expression together with RAM1 (BAM5) and GWD2 genes is stronger in the replum than the valve, whereas BAM3 is strong in both tissues. These results show that even though BAM3 and BAM4 genes apparently interact genetically in leaf starch metabolism, BAM4 is preferentially expressed in non-photosynthetic vascular tissue, so revealing a potentially greater level of complexity in the control of starch breakdown than had previously been recognised.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge