English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 2008-Oct

The heme oxygenase/carbon monoxide system is involved in the auxin-induced cucumber adventitious rooting process.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Wei Xuan
Fu-Yuan Zhu
Sheng Xu
Ben-Kai Huang
Teng-Fang Ling
Ji-Yan Qi
Mao-Bing Ye
Wen-Biao Shen

Keywords

Abstract

Indole acetic acid (IAA) is an important regulator of adventitious rooting via the activation of complex signaling cascades. In animals, carbon monoxide (CO), mainly generated by heme oxygenases (HOs), is a significant modulator of inflammatory reactions, affecting cell proliferation and the production of growth factors. In this report, we show that treatment with the auxin transport inhibitor naphthylphthalamic acid prevented auxin-mediated induction of adventitious rooting and also decreased the activity of HO and its by-product CO content. The application of IAA, HO-1 activator/CO donor hematin, or CO aqueous solution was able to alleviate the IAA depletion-induced inhibition of adventitious root formation. Meanwhile, IAA or hematin treatment rapidly activated HO activity or HO-1 protein expression, and CO content was also enhanced. The application of the HO-1-specific inhibitor zinc protoporphyrin IX (ZnPPIX) could inhibit the above IAA and hematin responses. CO aqueous solution treatment was able to ameliorate the ZnPPIX-induced inhibition of adventitious rooting. Molecular evidence further showed that ZnPPIX mimicked the effects of naphthylphthalamic acid on the inhibition of adventitious rooting, the down-regulation of one DnaJ-like gene (CSDNAJ-1), and two calcium-dependent protein kinase genes (CSCDPK1 and CSCDPK5). Application of CO aqueous solution not only dose-dependently blocked IAA depletion-induced inhibition of adventitious rooting but also enhanced endogenous CO content and up-regulated CSDNAJ-1 and CSCDPK1/5 transcripts. Together, we provided pharmacological, physiological, and molecular evidence that auxin rapidly activates HO activity and that the product of HO action, CO, then triggers the signal transduction events that lead to the auxin responses of adventitious root formation in cucumber (Cucumis sativus).

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge