English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Protein Expression and Purification 2015-Nov

The human rhabdomyosarcoma cell line TE671--Towards an innovative production platform for glycosylated biopharmaceuticals.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Julia Rosenlöcher
Constanze Weilandt
Grit Sandig
Stefan O Reinke
Véronique Blanchard
Stephan Hinderlich

Keywords

Abstract

The market of therapeutic glycoproteins (including coagulation factors, antibodies, cytokines and hormones) is one of the profitable, fast-growing and challenging sectors of the biopharmaceutical industry. Although mammalian cell culture is still expensive and technically complex, the ability to produce desired post-translational modifications, in particular glycosylation, is a major issue. Glycans can influence ligand binding, serum half-life as well as biological activity or product immunogenicity. Aiming to establish a novel production platform for recombinant glycoproteins, the human TE671 cell line was investigated. Since the initial analysis of cell membrane proteins showed a promising glycosylation of TE671 cells for biotechnological purposes, we focused on the recombinant expression of two model glycoproteins of therapeutical relevance. The optimization of the cell transfection procedure and serum-free expression succeeded for the human serine protease inhibitor alpha-1-antitrypsin (A1AT) and the hematopoietic cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF). N-glycan analyses of both purified proteins by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry provided first fundamental insights into the TE671 glycosylation potential. Besides protein specific pattern, strong distinctions - in particular for N-glycan fucosylation and sialylation - were observed depending on the medium conditions of the respective TE671 cell cultivations. The cell line's ability to synthesize complex and highly sialylated N-glycan structures has been shown. Our results demonstrate the TE671 cell line as a serious alternative to other existing human expression systems.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge