English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Journal of Biochemistry and Cell Biology 1999-Nov

The mitochondrial uncoupling protein-2: current status.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
C Fleury
D Sanchis

Keywords

Abstract

In eukaryotic cells ATP is generated by oxidative phosphorylation, an energetic coupling at the mitochondrial level. The oxidative reactions occurring in the respiratory chain generate an electrochemical proton gradient on both sides of the inner membrane. This gradient is used by the ATPsynthase to phosphorylate ADP into ATP. The coupling between respiration and ADP phosphorylation is only partial in brown adipose tissue (BAT) mitochondria, where the uncoupling protein UCP1 causes a reentry of protons into the matrix and abolishes the electrochemical proton gradient. The liberated energy is then dissipated as heat and ATP synthesis is reduced. This property was for a long time considered as an exception and specific to the non-shivering thermogenesis found in BAT. The recent cloning of new UCPs expressed in other tissues revealed the importance of this kind of regulation of respiratory control in metabolism and energy expenditure. The newly characterised UCPs are potential targets for obesity treatment drugs which could favour energy expenditure and diminish the metabolic efficiency. In 1997, we cloned UCP2 and proposed a role for this new uncoupling protein in diet-induced thermogenesis, obesity, hyperinsulinemia, fever and resting metabolic rate. Currently, an abundant literature deals with UCP2, but its biochemical and physiological functions and regulation remain unclear. The present review reports the status of our knowledge of this mitochondrial carrier in terms of sequence, activity, tissue distribution and regulation of expression. The putative physiological roles of UCP2 will be introduced and discussed.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge