English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecular Pharmacology 2014-Apr

The novel arsenical darinaparsin is transported by cystine importing systems.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Nicolas Garnier
Geneviève G J Redstone
Michael S Dahabieh
Jessica N Nichol
Sonia V del Rincon
Yuxuan Gu
D Scott Bohle
Yan Sun
Douglas S Conklin
Koren K Mann

Keywords

Abstract

Darinaparsin (Dar; ZIO-101; S-dimethylarsino-glutathione) is a promising novel organic arsenical currently undergoing clinical studies in various malignancies. Dar consists of dimethylarsenic conjugated to glutathione (GSH). Dar induces more intracellular arsenic accumulation and more cell death than the FDA-approved arsenic trioxide (ATO) in vitro, but exhibits less systemic toxicity. Here, we propose a mechanism for Dar import that might explain these characteristics. Structural analysis of Dar suggests a putative breakdown product: dimethylarsino-cysteine (DMAC). We show that DMAC is very similar to Dar in terms of intracellular accumulation of arsenic, cell cycle arrest, and cell death. We found that inhibition of γ-glutamyl-transpeptidase (γ-GT) protects human acute promyelocytic leukemia cells (NB4) from Dar, but not from DMAC, suggesting a role for γ-GT in the processing of Dar. Overall, our data support a model where Dar, a GSH S-conjugate, is processed at the cell surface by γ-GT, leading to formation of DMAC, which is imported via xCT, xAG, or potentially other cystine/cysteine importing systems. Further, we propose that Dar induces its own import via increased xCT expression. These mechanisms may explain the enhanced toxicity of Dar toward cancer cells compared with ATO.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge