English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Neuroimmunology 2007-May

The opioid antagonist, beta-funaltrexamine, inhibits chemokine expression in human astroglial cells.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Randall L Davis
Daniel J Buck
Neda Saffarian
Craig W Stevens

Keywords

Abstract

Emerging evidence indicates that neuroinflammatory responses in astroglia, including chemokine expression, are altered by opioids. Astroglial chemokines, such as CXCL10, are instrumental in response to many neuropathological insults. Opioid mediated disruption of astroglial CXCL10 expression may be detrimental in opioid abusers or patients receiving acute opioid therapy. We have characterized the in vitro effects of opioids on CXCL10 protein expression in human astroglial (A172) cells. The proinflammatory cytokine, tumor necrosis factor (TNF)alpha induced CXCL10 expression in A172 cells. Using MG-132, helenalin and SN50 [inhibitors of the transcription factor, nuclear factor (NF)-kappaB], we determined that NF-kappaB activation is instrumental in TNFalpha-induced CXCL10 expression in A172 astroglia. Morphine exposure during the 24 h TNFalpha stimulation period did not alter CXCL10 expression. However, fentanyl, a more potent mu-opioid receptor (MOR) agonist, inhibited TNFalpha-induced CXCL10 expression. Interestingly, neither the non-selective opioid receptor antagonist, naltrexone nor beta-funaltrexamine (beta-FNA), a highly selective MOR antagonist, blocked fentanyl mediated inhibition of TNFalpha-induced CXCL10 expression. Rather, beta-FNA dose-dependently inhibited TNFalpha-induced CXCL10 expression with a greater potency than that observed for fentanyl. Immunoblot analysis indicated that morphine, fentanyl and beta-FNA each reduced TNFalpha-induced nuclear translocation of NF-kappaB p65. These data show that beta-FNA and fentanyl inhibit TNFalpha-induced CXCL10 expression via a MOR-independent mechanism. Data also suggest that inhibition of TNFalpha-induced CXCL10 expression by fentanyl and beta-FNA is not directly related to a reduction in NF-kappaB p65 nuclear translocation. Further investigation is necessary in order to fully elucidate the mechanism through which these two opioid compounds inhibit CXCL10 expression. Understanding the mechanism by which chemokine expression is suppressed, particularly by the opioid antagonist, beta-FNA, may provide insights into the development of safe and effective treatments for neuroinflammation.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge