English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of General Physiology 1970-Jan

The prevalence of carbon-13 in respiratory carbon dioxide as an indicator of the types of endogenous substrate. The change from lipid to carbohydrate during the respiratory rise in potato slices.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
B S Jacobson
B N Smith
S Epstein
G G Laties

Keywords

Abstract

Isotope discrimination is a common feature of biosynthesis in nature, with the result that different classes of carbon compounds frequently display different (13)C/(12)C ratios. The (13)C/(12)C ratio of lipid in potato tuber tissue is considerably lower than that for starch or protein. We have collected respiratory CO(2) from potato discs in successive periods through 24 hr from the time of cutting-an interval in which the respiration rate rises 3-5-fold. The (13)C/(12)C ratio of the evolved CO(2) was determined for each period, and compared with the (13)C/(12)C ratios of the major tissue metabolites. In the first hours the carbon isotope ratio of the CO(2) matches that of lipid. With time, the ratio approaches that typical of starch or protein. An estimation has been made of the contribution of lipid and carbohydrate to the total respiration at each juncture. In connection with additional observations, it was deduced that the basal, or initial, respiration represents lipid metabolism-possibly the alpha-oxidation of long chain fatty acids-while the developed repiration represents conventional tricarboxylic acid cycle oxidation of the products of carbohydrate glycolysis. The true isotopic composition of the respiratory CO(2) may be obscured by fractionation attending the refixation of CO(2) during respiration, and by CO(2) arising from dissolved CO(2) and bicarbonate preexisting in the tuber. Means are described for coping with both pitfalls.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge