English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Pain 2004-Nov

The protein tyrosine kinase inhibitor, genistein, decreases excitability of nociceptive neurons.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Lieju Liu
Tianming Yang
S A Simon

Keywords

Abstract

One mechanism by which neurons regulate their excitability is through ion channel phosphorylation. Compounds that increase nociceptive neuron excitability can cause hyperalgesia or allodynia whereas compounds that decrease nociceptive neuron excitability can be used as analgesics to relieve pain arising from inflammation or trauma. To identify targets that may cause a decrease in nociceptive neuron excitability, we have investigated the effects of genistein, a specific inhibitor of protein tyrosine kinases (PTKs), on capsaicin-sensitive neurons from cultured rat trigeminal ganglion neurons. It was found that genistein decreased the number of evoked action potentials, and hence their excitability. To determine whether genistein's effects occur through the inhibition of PTKs, we also tested the effects of two of its inactive analogues, daidzein and genistin. Whereas daidzein decreased excitability, albeit to a lower extent than genistein, excitability was unaffected by genistin. To determine which currents are involved in genistein's reduction in nociceptive neuron excitability, whole-cell voltage-clamp measurements were performed on voltage-gated sodium and potassium currents. One hundred micromolar genistein, daidzein and genistin inhibited tetrodotoxin-resistant voltage-gated sodium currents 74, 42, and 3%, respectively. Genistein markedly inhibited delayed rectifier (IK) and IA potassium currents, whereas daidzein and genistin were comparatively ineffective. In summary, we found that genistein's ability to inhibit nociceptive neuron excitability arises primarily from its non-specific inhibition of voltage-dependent sodium channels.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge