English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecular Plant-Microbe Interactions 2019-Dec

The ptsG Gene Encoding the Major Glucose Transporter of Bacillus cereus C1L Participates in Root Colonization and Beneficial Metabolite Production to Induce Plant Systemic Disease Resistance.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Chia-Hua Lin
Chia-Yen Lu
Ann-Tze Tseng
Chien-Jui Huang
Yu-Ju Lin
Chao-Ying Chen

Keywords

Abstract

Rhizosphere interactions between microorganisms and plants have great influence on plant health. Bacillus cereus C1L, an induced systemic resistance (ISR)-eliciting rhizobacterium from Lilium formosanum, can protect monocot and dicot plants from disease challenges. To identify the ISR-involved bacterial genes, the systemic protection effect of transposon-tagged mutants of B. cereus C1L against southern corn leaf blight (SCLB) was surveyed, and a mutant of the ptsG gene encoding glucose-specific permease of the phosphotransferase system was severely impaired in the abilities of disease suppression and root colonization. The ptsG mutant lost the preferential utilization of glucose and showed reduction of glucose-assisted growth in minimal medium. A promoter-based reporter assay revealed that ptsG expression could be activated by certain sugar constituents of maize root exudates, among which B. cereus C1L exhibited the highest chemotactic response toward glucose, whereas neither of them could attract the ptsG mutant. Additionally, ptsG deficiency almost completely abolished glucose uptake of B. cereus C1L. Metabolite analysis indicated that the lack of ptsG undermined glucose-induced accumulation of acetoin and 2,3-butanediol in B. cereus C1L, both eliciting maize ISR against SCLB. Pretreatments with B. cereus C1L, ptsG mutant, acetoin, and 2,3-butanediol enhanced defense-related reactive oxygen species accumulation and callose deposition at different levels that were positively correlated to their ISR-eliciting activities. Thus, glucose uptake-mediating ptsG participates in ISR elicitation by endowing B. cereus C1L with the full capacities for root colonization and beneficial glucose metabolite production, providing a clue regarding how ISR-mediating rhizobacteria create a mutually beneficial relationship with various plant species.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge