English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Natural Product Communications 2010-Apr

The quantitative effects of temperature and light intensity on phenolics accumulation in St. John's wort (Hypericum perforatum).

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Mehmet Serhat Odabas
Necdet Camas
Cuneyt Cirak
Jolita Radusiene
Valdimaras Janulis
Liudas Ivanauskas

Keywords

Abstract

The quantitative effects of temperature and light intensity on accumulation of phenolics were examined on greenhouse-grown plants of Hypericum perforatum L. Plants were grown in a greenhouse separated into two parts: shaded by 50% transparent polyethylene cover and un-shaded. Temperature values and light intensities were measured daily during the experiment, while plants were harvested weekly for HPLC analyses. Multi regression analyses were performed to describe the quantitative effects of temperature and light intensity on phenolics accumulation. According to the results, increases in temperatures from 24 degrees C to 32 degrees C and light intensities from 803.4 microMm(-2)s(-1) to 1618.6 microMm(-2)s(-1) resulted in a continuous increase in amentoflavone, apigenin-7-glucoside, cholorogenic acid, hyperoside, kaempferol, rutin, quercetin and quercitrin contents. The relationships between temperature, light intensity and phenolics accumulation were formulized as P= [a + (b1 x t) + (b2 x l) + [b3 x(t x l)]] equition, where P is the content of the corresponding phenolic, t temperature (degrees C), l light intensity (microMm(-2)s(-1)) and a, b1, b2 and b3 the coefficients of the produced equation. The regression coefficient (R2) value for amentoflavone was 0.84, for apigenin-7-glucoside 0.87, for cholorogenic acid 0.83, for hyperoside 0.95, for kaempferol 0.76, for rutin 0.70, for quercetin - 0.93, and for quercitrin - 0.86. All R2 values and standard errors of the equations were found to be significant at the p<0.001 level. The mathematical models produced in the present study could be applied by Hypericum researchers as useful tools for the prediction of phenolics content instead of routine chemical analyses.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge