English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Investigative Ophthalmology and Visual Science 2012-Oct

The retinal clock drives the expression of Kcnv2, a channel essential for visual function and cone survival.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Philip Hölter
Stefanie Kunst
Tanja Wolloscheck
Debra K Kelleher
Carsten Sticht
Uwe Wolfrum
Rainer Spessert

Keywords

Abstract

OBJECTIVE

The gene Kcnv2 codes for the voltage-gated potassium channel subunit Kv8.2, which can coassemble with Kv2.1 subfamily members to constitute functional voltage-gated potassium channels. Mutations in the Kcnv2 gene result in a retinal disorder designated "cone dystrophy with supernormal rod response (CDSRR)," revealing that Kcnv2 is essential for visual processing and cone survival. The aim of this study was to determine whether expression of Kcnv2 and Kv2.1 is under circadian regulation and may thus contribute to the clock-driven adjustment of photoreceptor function.

METHODS

Expression of the genes was recorded in preparations of the whole retina and microdissected retinal neurons by using quantitative polymerase chain reaction and Western blot.

RESULTS

The transcript levels of Kcnv2 and Kv2.1 in preparations of whole retina and photoreceptor cells were found to display daily rhythms, with elevated values during the night. For Kcnv2 this rhythm was shown to evoke a corresponding rhythm in Kv8.2, the protein product of this gene. The daily changes in retinal Kcnv2 and Kv2.1 mRNA levels persisted under constant darkness and are therefore driven by the endogenous retinal clock system, which itself is entrained by light.

CONCLUSIONS

The present data provide evidence that the transcriptional regulation of Kcnv2 and Kv2.1 is a way through which the retinal clock system drives the functional adaptation of visual function to the marked daily changes in environmental lighting conditions.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge