English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Physiology 1997-Feb

The role of ATP in the regulation of intracellular Ca2+ release in single fibres of mouse skeletal muscle.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
D G Allen
J Lännergren
H Westerblad

Keywords

Abstract

1. Single fibres were dissected from mouse flexor brevis muscle and injected with indo-1 and the P3-1 (2-nitrophenyl)ethyl ester of ATP (caged ATP). Myoplasmic calcium concentration ([Ca2+]i) and force were monitored during single tetani or tetani repeated until force was reduced to about 30% of control values. In vitro experiments showed that an intense, brief ultraviolet illumination (a flash) photolysed 12% of the caged ATP to ATP. 2. Fibres that had been injected with caged ATP showed concentration-dependent changes. High concentrations of caged ATP caused a reduction in [Ca2+]i during tetani (tetanic [Ca2+]i), a reduction in force in unfatigued tetani and the fibres fatigued more rapidly when stimulated repeatedly. 3. Photolytic release of ATP in unfatigued fibres caused a concentration-dependent increase in tetanic [Ca2+]i and in force. 4. When ATP was released by photolysis in a fibre fatigued by repeated tetani, it produced a concentration-dependent increase in tetanic [Ca2+]i and force. The increase in tetanic [Ca2+]i was small (63 nM per 100 microM increase in ATP) and could explain some, but not all, the increase in force. However, taking into account the fact that control flashes in the absence of caged ATP caused a small decrease in tetanic [Ca2+]i, we believe that the increase in force may be explained by the increase in tetanic [Ca2+]i. There was no evidence of changes in the sarcoplasmic reticulum Ca2+ pump rate after photolysis of caged ATP. 5. Caged ATP affects some site(s) involved in excitation-contraction coupling and the consequences are similar to muscle fatigue. When a small fraction of this caged ATP is photolysed to ATP, the consequences of fatigue are partially reversed. These observations suggest that site(s) which either bind ATP or depend on ATP hydrolysis have a key role in excitation-contraction coupling and in muscle fatigue.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge