English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Hematology, Transfusion and Cell Therapy

The role of ClpX in erythropoietic protoporphyria.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Jared C Whitman
Barry H Paw
Jacky Chung

Keywords

Abstract

Hemoglobin is an essential biological component of human physiology and its production in red blood cells relies upon proper biosynthesis of heme and globin protein. Disruption in the synthesis of these precursors accounts for a number of human blood disorders found in patients. Mutations in genes encoding heme biosynthesis enzymes are associated with a broad class of metabolic disorders called porphyrias. In particular, one subtype - erythropoietic protoporphyria - is caused by the accumulation of protoporphyrin IX. Erythropoietic protoporphyria patients suffer from photosensitivity and a higher risk of liver failure, which is the principle cause of morbidity and mortality. Approximately 90% of these patients carry loss-of-function mutations in the enzyme ferrochelatase (FECH), while 5% of cases are associated with activating mutations in the C-terminus of ALAS2. Recent work has begun to uncover novel mechanisms of heme regulation that may account for the remaining 5% of cases with previously unknown genetic basis. One erythropoietic protoporphyria family has been identified with inherited mutations in the AAA+ protease ClpXP that regulates ALAS activity. In this review article, recent findings on the role of ClpXP as both an activating unfoldase and degrading protease and its impact on heme synthesis will be discussed. This review will also highlight the role of ClpX dysfunction in erythropoietic protoporphyria.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge