English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Dalton Transactions 2010-Mar

The role of Glu498 in the dioxygen reactivity of CotA-laccase from Bacillus subtilis.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Zhenjia Chen
Paulo Durão
Catarina S Silva
Manuela M Pereira
Smilja Todorovic
Peter Hildebrandt
Isabel Bento
Peter F Lindley
Lígia O Martins

Keywords

Abstract

The multicopper oxidases couple the one-electron oxidation of four substrate molecules to the four electron reductive cleavage of the O-O bond of dioxygen. This reduction takes place at the trinuclear copper centre of the enzyme and the dioxygen approaches this centre through an entrance channel. In this channel, an acidic residue plays a key role in steering the dioxygen to the trinuclear copper site, providing protons for the catalytic reaction and giving overall stability to this site. In this study, the role of the Glu(498) residue, located within the entrance channel to the trinuclear copper centre, has been investigated in the binding and reduction of dioxygen by the CotA-laccase from Bacillus subtilis. The absence of an acidic group at the 498 residue, as in the E498T and E498L mutants, results in a severe catalytic impairment, higher than 99%, for the phenolic and non-phenolic substrates tested. The replacement of this glutamate by aspartate leads to an activity that is around 10% relative to that of the wild-type. Furthermore, while this latter mutant shows a similar K(m) value for dioxygen, the E498T and E498L mutants show a decreased affinity, when compared to the wild-type. X-ray structural and spectroscopic analysis (UV-visible, electron paramagnetic resonance and resonance Raman) reveal perturbations of the structural properties of the catalytic centres in the Glu(498) mutants when compared to the wild-type protein. Overall, the results strongly suggest that Glu(498) plays a key role in the protonation events that occur at the trinuclear centre and in its stabilization, controlling therefore the binding of dioxygen and its further reduction.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge