English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecular Microbiology 2001-Sep

The roles of mucD and alginate in the virulence of Pseudomonas aeruginosa in plants, nematodes and mice.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
P Yorgey
L G Rahme
M W Tan
F M Ausubel

Keywords

Abstract

We are exploiting the broad host range of the human opportunistic pathogen Pseudomonas aeruginosa strain PA14 to elucidate the molecular basis of bacterial virulence in plants, nematodes, insects and mice. In this report, we characterize the role that two PA14 gene products, MucD and AlgD, play in virulence. MucD is orthologous to the Escherichia coli periplasmic protease and chaperone DegP. DegP homologues are known virulence factors that play a protective role in stress responses in various species. AlgD is an enzyme involved in the biosynthesis of the exopolysaccharide alginate, which is hyperinduced in mucD mutants. A PA14 mucD mutant was significantly impaired in its ability to cause disease in Arabidopsis thaliana and mice and to kill the nematode Caenorhabditis elegans. Moreover, MucD was found to be required for the production of an extracellular toxin involved in C. elegans killing. In contrast, a PA14 algD mutant was not impaired in virulence in plants, nematodes or mice. A mucDalgD double mutant had the same phenotype as the mucD single mutant in the plant and nematode pathogenesis models. However, the mucDalgD double mutant was synergistically reduced in virulence in mice, suggesting that alginate can partially compensate for the loss of MucD function in mouse pathogenesis.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge