English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecular Microbiology 2016-May

The signal peptide peptidase SppA is involved in sterol regulatory element-binding protein cleavage and hypoxia adaptation in Aspergillus nidulans.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Chinbayar Bat-Ochir
Jun-Yong Kwak
Sun-Ki Koh
Mee-Hyang Jeon
Dawoon Chung
Yin-Won Lee
Suhn-Kee Chae

Keywords

Abstract

Using forward genetics, we revealed that the signal peptide peptidase (SPP) SppA, an aspartyl protease involved in regulated intramembrane proteolysis (RIP), is essential for hypoxia adaptation in Aspergillus nidulans, as well as hypoxia-sensitive mutant alleles of a sterol regulatory element-binding protein (SREBP) srbA and the Dsc ubiquitin E3 ligase complex dscA-E. Both null and dead activity [D337A] mutants of sppA failed to grow in hypoxia, and the growth defect of ΔsppA was complemented by nuclear SrbA-N381 expression. Additionally, SppA interacted with SrbA in the endoplasmic reticulum, where SppA localized in normoxia and hypoxia. Expression of the truncated SrbA-N414 covering the SrbA sequence prior to the second transmembrane region rescued the growth of ΔdscA but not of ΔsppA in hypoxia. Unlike ΔdscA and ΔdscA;ΔsppA double mutants, in which SrbA cleavage was blocked, the molecular weight of cleaved SrbA increased in ΔsppA compared to the control strain in immunoblot analyses. Overall, our data demonstrate the sequential cleavage of SrbA by Dsc-linked proteolysis followed by SppA, proposing a new model of RIP for SREBP cleavage in fungal hypoxia adaptation. Furthermore, the function of SppA in hypoxia adaptation was consistent in Aspergillus fumigatus, suggesting the potential roles of SppA in fungal pathogenesis.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge