English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Bone 2011-Aug

The skeletal effects of the tyrosine kinase inhibitor nilotinib.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Susannah O'Sullivan
Jian-Ming Lin
Maureen Watson
Karen Callon
Pak Cheung Tong
Dorit Naot
Anne Horne
Opetaia Aati
Fran Porteous
Greg Gamble

Keywords

Abstract

Nilotinib is a tyrosine kinase inhibitor (TKI) developed to manage imatinib-resistance in patients with chronic myeloid leukemia (CML). It inhibits similar molecular targets to imatinib, but is a significantly more potent inhibitor of Bcr-Abl. Nilotinib exhibits off-target effects in other tissues, and of relevance to bone metabolism, hypophosphataemia has been reported in up to 30% of patients receiving nilotinib. We have assessed the effects of nilotinib on bone cells in vitro and on bone metabolism in patients receiving nilotinib for treatment of CML. We firstly investigated the effects of nilotinib on proliferating and differentiating osteoblastic cells, and on osteoclastogenesis in murine bone marrow cultures and RAW264.7 cells. Nilotinib potently inhibited osteoblast proliferation (0.01-1uM), through inhibition of the platelet-derived growth factor (PDGFR). There was a biphasic effect on osteoblast differentiation such that it was reduced by lower concentrations of nilotinib (0.1-0.5uM), with no effect at higher concentrations (1uM). Nilotinib also potently inhibited osteoclastogenesis, predominantly by stromal-cell dependent mechanisms. Thus, nilotinib decreased osteoclast development in murine bone marrow cultures, but did not affect osteoclastogenesis in RAW264.7 cells. Nilotinib treatment of osteoblastic cells increased expression and secretion of OPG and decreased expression of RANKL. In 10 patients receiving nilotinib, levels of bone turnover markers were in the low-normal range, despite secondary hyperparathyroidism, findings that are similar to those in patients treated with imatinib. Bone density tended to be higher than age and gender-matched normal values. These data suggest that nilotinib may have important effects on bone metabolism. Prospective studies should be conducted to determine the long-term effects of nilotinib on bone density and calcium metabolism.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge