English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Molecular Biology 1996-Mar

The starch phosphorylase gene is subjected to different modes of regulation in starch-containing tissues of potato.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
B St-Pierre
C Bertrand
A Camirand
M Cappadocia
N Brisson

Keywords

Abstract

Analysis of the levels of starch phosphorylase mRNA and its product in the various organs of the potato plant indicates that the gene is differentially regulated, leading to a high accumulation of the gene product in tubers. The amount of phosphorylase transcripts synthesized in nuclei isolated from tubers and leaves indicates that the difference in the steady-state levels of phosphorylase mRNA in these organs can be explained by different rates of initiation of transcription. However, while rates of initiation of transcription are similar in tubers and stems, the steady-state level of phosphorylase mRNA is much lower in the stem. Transgenic potato plants expressing the beta-glucuronidase (GUS) gene under the control of 5'-flanking sequences of the phosphorylase gene exhibited high levels of GUS activity in petioles, stems, stolons, tubers and roots, but low levels in leaves. This confirms the results of transcription assays observed for leaves, stems and tubers, and indicates that accumulation of phosphorylase mRNA in stems and tubers is not controlled solely by transcription initiation. Finally, histochemical analysis for GUS activity in transgenic potato plants suggests that transcription of the phosphorylase gene predominantly occurs in starch-containing cells associated to vascular tissues, and suggests a role for starch phosphorylase in the mobilization of starch stored along the translocation pathway.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge