English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Expert Opinion on Investigational Drugs 1999-Sep

The therapeutic potential of PDE4 inhibitors.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
H J Dyke
J G Montana

Keywords

Abstract

Phosphodiesterase enzymes are responsible for the inactivation of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Phosphodiesterase 4 (PDE4) is a cAMP specific phosphodiesterase expressed in inflammatory cells such as eosinophils. Inhibition of PDE4 results in an elevation of cAMP in these cells, which in turn downregulates the inflammatory response. The anti-inflammatory effects of PDE4 inhibitors have been well documented both in vitro and in vivo in a variety of animal models. The potential use of PDE4 inhibitors as anti-inflammatory agents for the treatment of asthma and other inflammatory disorders has received considerable attention from the pharmaceutical industry, but to date, there are no selective PDE4 inhibitors on the market. Early PDE4 inhibitors, typified by rolipram, suffered from dose-limiting side effects, including nausea and emesis, which severely restricted their therapeutic utility. Second generation compounds, including CDP840 and SB207499 (Ariflo), have been identified with reduced side effect liability. Recent evidence suggests a correlation between side effects and the ability of compounds to bind at the so-called high affinity rolipram binding site (HPDE), whilst beneficial effects appear to correlate with binding at the catalytic site. A number of companies are actively pursuing compounds which exhibit improved affinity for the catalytic site and reduced affinity for the HPDE, in the expectation that this will provide compounds with an improved therapeutic index.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge