English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Molecular Graphics and Modelling 2004-Sep

The three-dimensional structure of Arabidopsis thaliana O-methyltransferase predicted by homology-based modelling.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Heejung Yang
Joong-Hoon Ahn
Ragai K Ibrahim
Sangsan Lee
Yoongho Lim

Keywords

Abstract

O-methylation of flavonoid compounds is an important enzymatic reaction since it not only reduces the chemical reactivity of their phenolic hydroxyl groups but also increases their lipophilicity and, hence, their intracellular compartmentation. Several genes encoding flavonoid O-methyltransferases (OMTs) have been isolated and characterized both at the molecular and biochemical levels. In contrast with mammalian enzymes, plant OMTs exhibit narrow substrate specificities as well as position-specific activities, so that the homology comparison, derived using programs such as BLAST can not provide sufficient information on the enzyme function or its substrate preference. In order to study these characteristics, therefore, another approach, homology-based modelling is being carried out. We report here the determination of the 3-D structure of Arabidopsis thaliana O-methyltransferase, AtOMT1 as well as its dynamics when complexed with its substrate. The predicted structure obtained by homology-based modelling is conserved during molecular dynamics simulations. AtOMT1 exhibits a structure similar to that of caffeic acid O-methyltransferase, COMT when the latter was used as a template. Whereas COMT includes 20 alpha-helices and nine beta-sheets, AtOMT1 has 16 and 9, respectively. Although the homology between both proteins is higher than 77% and all amino acids surrounding the active sites, except one residue, are similar in their primary sequences, the two proteins exhibit different substrate preferences. The differences in substrate specificity may be explained on the basis of the predicted structures of the protein and its complex with the substrate. In addition, docking the substrate into the active site of the protein allowed the study of the structural change of the active site on the dihedral angle distribution of the residues surrounding the active site.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge