English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biochemical Pharmacology 1992-Jul

The toxicological relevance of paracetamol-induced inhibition of hepatic respiration and ATP depletion.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
O Strubelt
M Younes

Keywords

Abstract

In order to elucidate the role of mitochondrial dysfunction in paracetamol-induced hepatotoxicity, the effects of paracetamol on the oxygen consumption and ATP content of the isolated perfused rat liver were correlated with parameters of hepatic viability and hepatotoxicity. Paracetamol at 5 g/L reduced the oxygen consumption of the livers by about 80% and hepatic ATP content by 96%. Hepatotoxicity was evident from the nearly complete interruption of bile secretion, a marked release of enzymes [glutamate-pyruvate transaminase (GPT), lactate dehydrogenase (LDH)] in the perfusate, a depletion of hepatic glutathione and an accumulation of calcium in the liver. Paracetamol-induced hepatotoxicity could be prevented completely by using livers from non-fasted rats as well as by addition of fructose to the perfusate of livers from fasted animals. Both treatments resulted in an increased energy supply from anaerobic glycolysis as evidenced by a large release of lactate and pyruvate into the perfusate, but did not inhibit paracetamol-induced decline of oxygen consumption. The decrease in hepatic oxygen consumption depended on the dose of paracetamol and occurred first at a concentration of 0.2 g/L (-10%). LDH and GPT release, on the other hand, was elevated at 2 and 5 g/L and calcium accumulation occurred at 5 g/L paracetamol only. Inhibition of mixed-function oxidases by dithiocarb did not prevent the decrease in oxygen consumption and the resulting hepatic injury induced by paracetamol. The oral administration of the high dose of 5 g/kg paracetamol in vivo to rats exerted strong hepatotoxicity but produced maximal serum levels of 800 mg/L paracetamol only and did not decrease hepatic oxygen consumption as measured in vitro. Our results show that in the isolated perfused rat liver in vitro, only high concentrations of paracetamol can produce "chemical hypoxia" by attacking mitochondria so as to cause hepatic injury. Such high concentrations of paracetamol are not attained in vivo, however. "Chemical hypoxia", thus, seems not to be relevant to the well-known hepatotoxic action of paracetamol.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge