English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecular Ecology 2016-Oct

The transcriptome response of Heliconius melpomene larvae to a novel host plant.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Quan-You Yu
Shou-Min Fang
Ze Zhang
Chris D Jiggins

Keywords

Abstract

In the warfare between herbivore and host plant, insects have evolved a variety of defensive mechanisms, including allelochemical transformation and excretion. Several studies have explored the transcriptome responses of insects after host plant shifts to understand these mechanisms. We investigated the plastic responses of Heliconius melpomene larvae feeding on a native host Passiflora menispermifolia and a less strongly defended nonhost species, Passiflora biflora. In total, 326 differentially expressed genes were identified, with a greater number upregulated on the more strongly defended native host. Functional annotation showed that detoxifying enzymes, transporters and components of peritrophic membrane were strongly represented. In total, 30 candidate detoxification genes were differentially expressed, with glutathione S-transferases (GSTs) and UDP-glucuronosyltransferases (UGTs) showing the highest proportion of differential expression, 27.3% and 17.3%, respectively. These differentially expressed detoxification genes were shown to evolve mainly under the influence of purifying selection, suggesting that protein-coding evolution has not played a major role in host adaptation. We found only one gene, GSTe3, with evidence of adaptive evolution at H40, which is around the G-site and might alter enzyme activity. Based on our transcriptome and molecular evolution analysis, we suggest that transcriptional plasticity of genes in a herbivore may play an important role in adaptation to a new host plant.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge