English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Environmental Science and Pollution Research 2017-Jun

The treatment of wastewater containing pharmaceuticals in microcosm constructed wetlands: the occurrence of integrons (int1-2) and associated resistance genes (sul1-3, qacEΔ1).

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Monika Nowrotek
Ewa Kotlarska
Aneta Łuczkiewicz
Ewa Felis
Adam Sochacki
Korneliusz Miksch

Keywords

Abstract

The aim of this study was to analyze the occurrence of sulfonamide resistance genes (sul1-3) and other genetic elements as antiseptic resistance gene (qacEΔ1) and class 1 and class 2 integrons (int1-2) in the upper layer of substrate and in the effluent of microcosm constructed wetlands (CWs) treating artificial wastewater containing diclofenac and sulfamethoxazole (SMX), which is a sulfonamide antibiotic. The bacteria in the substrate and in the effluents were equipped with the sul1-2, int1, and qacEΔ1 resistance determinants, which were introduced into the CW system during inoculation with activated sludge and with the soil attached to the rhizosphere of potted seedlings of Phalaris arundinacea 'Picta' roots (int1). By comparing the occurrence of the resistance determinants in the upper substrate layer and the effluent, it can be stated that they neither were lost nor emerged along the flow path. The implications of the presence of antibiotic resistance genes in the effluent may entail a risk of antibiotic resistance being spread in the receiving environment. Additionally, transformation products of SMX were determined. According to the obtained results, four (potential) SMX transformation products were identified. Two major metabolites of SMX, 2,3,5-trihydroxy-SMX and 3,5-dihydroxy-SMX, indicated that SMX may be partly oxidized during the treatment. The remaining two SMX transformation products (hydroxy-glutathionyl-SMX and glutathionyl-SMX) are conjugates with glutathione, which suggests the ability of CW bacterial community to degrade SMX and resist antimicrobial stress.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge