English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Food and Function 2016-Apr

The urinary metabolomic profile following the intake of meals supplemented with a cocoa extract in middle-aged obese subjects.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Idoia Ibero-Baraibar
Ana Romo-Hualde
Carlos J Gonzalez-Navarro
M Angeles Zulet
J Alfredo Martinez

Keywords

Abstract

Metabolomics is used to assess the compliance and bioavailability of food components, as well as to evaluate the metabolic changes associated with food consumption. This study aimed to analyze the effect of consuming ready-to-eat meals containing a cocoa extract, within an energy restricted diet on urinary metabolomic changes. Fifty middle-aged volunteers [30.6 (2.3) kg m(-2)] participated in a 4-week randomised, parallel and double-blind study. Half consumed meals supplemented with 1.4 g of cocoa extract (645 mg polyphenols) while the remaining subjects received meals without cocoa supplementation. Ready-to-eat meals were included within a 15% energy restricted diet. Urine samples (24 h) were collected at baseline and after 4 weeks and were analyzed by high-performance-liquid chromatography-time-of-flight-mass-spectrometry (HPLC-TOF-MS) in negative and positive ionization modes followed by multivariate analysis. The relationship between urinary metabolites was evaluated by the Spearman correlation test. Interestingly, the principal component analysis discriminated among the baseline group, control group at the endpoint and cocoa group at the endpoint (p < 0.01), although in the positive ionization mode the baseline and control groups were not well distinguished. Metabolites were related to theobromine metabolism (3-methylxanthine and 3-methyluric acid), food processing (L-beta-aspartyl-L-phenylalanine), flavonoids (2,5,7,3',4'-pentahydroxyflavanone-5-O-glucoside and 7,4'-dimethoxy-6-C-methylflavanone), catecholamine (3-methoxy-4-hydroxyphenylglycol-sulphate) and endogenous metabolism (uridine monophosphate). These metabolites were present in higher (p < 0.001) amounts in the cocoa group. 3-Methylxanthine and l-beta-aspartyl-L-phenylalanine were confirmed with standards. Interestingly, 3-methoxy-4-hydroxyphenylglycol-sulphate was positively correlated with 3-methylxanthine (rho = 0.552; p < 0.001) and 7,4'-dimethoxy-6-C-methylflavanone (rho = 447; p = 0.002). In conclusion, the metabolomic approach supported the compliance of the volunteers with the intervention and suggested the bioavailability of cocoa compounds within the meals.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge