English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Zhejiang University. Science. B 2011-Jun

Therapeutic efficiency of tissue-engineered human corneal endothelium transplants on rabbit primary corneal endotheliopathy.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Ting-jun Fan
Jun Zhao
Xiu-zhong Hu
Xi-ya Ma
Wen-bo Zhang
Chao-zhong Yang

Keywords

Abstract

To evaluate the therapeutic efficiency of tissue-engineered human corneal endothelia (TE-HCEs) on rabbit primary corneal endotheliopathy (PCEP), TE-HCEs reconstructed with monoclonal human corneal endothelial cells (mcHCECs) and modified denuded amniotic membranes (mdAMs) were transplanted into PCEP models of New Zealand white rabbits using penetrating keratoplasty. The TE-HCEs were examined using diverse techniques including slit-lamp biomicroscopy observation and pachymeter and tonometer measurements in vivo, and fluorescent microscopy, alizarin red staining, paraffin sectioning, scanning and transmission electron microscopy observations in vitro. The corneas of transplanted eyes maintained transparency for as long as 200 d without obvious edema or immune rejection. The corneal thickness of transplanted eyes decreased gradually after transplanting, reaching almost the thickness of normal eyes after 156 d, while the TE-HCE non-transplanted eyes were turbid and showed obvious corneal edema. The polygonal corneal endothelial cells in the transplanted area originated from the TE-HCE transplant. An intact monolayer corneal endothelium had been reconstructed with the morphology, cell density and structure similar to those of normal rabbit corneal endothelium. In conclusion, the transplanted TE-HCE can reconstruct the integrality of corneal endothelium and restore corneal transparency and thickness in PCEP rabbits. The TE-HCE functions normally as an endothelial barrier and pump and promises to be an equivalent of HCE for clinical therapy of human PCEP.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge