English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Life Sciences 2013-Mar

Therapeutic modulation of cannabinoid lipid signaling: metabolic profiling of a novel antinociceptive cannabinoid-2 receptor agonist.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Jodianne T Wood
Dustin M Smith
David R Janero
Alexander M Zvonok
Alexandros Makriyannis

Keywords

Abstract

OBJECTIVE

AM-1241, a novel, racemic cannabinoid-2 receptor (CB2) ligand, is the primary experimental agonist used to characterize the role of CB2-mediated lipid signaling in health and disease, including substance abuse disorders. In vivo pharmacological effects have been used as indirect proxies for AM-1241 biotransformation processes that could modulate CB2 activity. We report the initial pre-clinical characterization of AM-1241 biotransformation and in vivo distribution.

METHODS

AM-1241 metabolism was characterized in a variety of predictive in vitro systems (Caco-2 cells; mouse, rat and human microsomes) and in the mouse in vivo. Liquid chromatography and mass spectrometry techniques were used to quantify AM-1241 tissue distribution and metabolic conversion.

RESULTS

AM-1241 bound extensively to plasma protein/albumin. A pharmacological AM-1241 dose (25mg/kg, i.v.) was administered to mice for direct determination of its plasma half-life (37 min), following which AM-1241 was quantified in brain, spleen, liver, and kidney. After p.o. administration, AM-1241 was detected in plasma, spleen, and kidney; its oral bioavailability was ~21%. From Caco-2 permeability studies and microsomal-based hepatic clearance estimates, in vivo AM-1241 absorption was moderate. Hepatic microsomal metabolism of AM-1241 in vitro generated hydroxylation and demethylation metabolites. Species-dependent differences were discovered in AM-1241's predicted hepatic clearance. Our data demonstrate that AM-1241 has the following characteristics: a) short plasma half-life; b) limited oral bioavailability; c) extensive plasma/albumin binding; d) metabolic substrate for hepatic hydroxylation and demethylation; e) moderate hepatic clearance.

CONCLUSIONS

These results should help inform the design, optimization, and pre-clinical profiling of CB2 ligands as pharmacological tools and medicines.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge