English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy 2016-Aug

Thermodynamic study of β-cyclodextrin-dye inclusion complexes using gradient flow injection technique and molecular modeling.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Y Izadmanesh
Jahan B Ghasemi

Keywords

Abstract

Gradient flow injection technique-diode array spectrophotometry was applied for β-cyclodextrin (β-CD)-dye inclusion complex studies. A single injection of a small amount of mixed β-CD-dye solution (100μl) into the carrier solution of the dye and recording the spectra gave the titration data. The mole ratio data were calculated by calibrating the dispersion pattern using a calibrator dye (rose bengal). Model-based multivariate methods were used to analyze the spectral-mole ratio data and, as a result, estimate stability constants and concentration-spectral profiles. Reliability was tested by applying this method to study the β-CD host-guest complexes with several dyes as guest molecules. Singular value decomposition (SVD) was used to select the chemical model and reduce noise. Molecular modeling provided the ability to predict the guest conformation-orientation (posing) within the cavity of β-CD and the nature of the involved interactions. Among those dyes showing observable spectral variation, the stoichiometric ratio of β-CD: dye (and log Kf) of methyl orange, fluorescein, phenol red, 4-(2-pyridylazo) resorcinol (PAR), and crystal violet were calculated to be 1:1 (4.26±0.01), 1:1 (1.53±0.08), 1:1 (3.11±0.04), 1:1 (1.06±0.12), and 2:1 (5.27±0.03), respectively. Compared with the classical method of titration, this method is simple and fast and has the advantage of needing reduced human interference. Molecular modeling facilitates a better understanding of the type of interactions and conformation of guest molecules in the β-CD cavity. The details of the proposed method are discussed in this paper.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge