English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
PLoS ONE 2012

Thr 163 phosphorylation causes Mcl-1 stabilization when degradation is independent of the adjacent GSK3-targeted phosphodegron, promoting drug resistance in cancer.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Shanna K Nifoussi
Julie A Vrana
Aaron M Domina
Alfredo De Biasio
Jingang Gui
Mark A Gregory
Stephen R Hann
Ruth W Craig

Keywords

Abstract

The antiapoptotic Bcl-2 family member Mcl-1 is a PEST protein (containing sequences enriched in proline, glutamic acid, serine, and threonine) and is subject to rapid degradation via multiple pathways. Impaired degradation leading to the maintenance of Mcl-1 expression is an important determinant of drug resistance in cancer. Phosphorylation at Thr 163 in the PEST region, stimulated by 12-O-tetradecanoylphorbol acetic acid (TPA)-induced activation of extracellular signal-regulated kinase (ERK), is associated with Mcl-1 stabilization in BL41-3 Burkitt lymphoma cells. This contrasts with the observation that Thr 163 phosphorylation in normal fibroblasts primes glycogen synthase kinase (GSK3)-induced phosphorylation at Ser 159, producing a phosphodegron that targets Mcl-1 for degradation. In the present follow-up studies in BL41-3 cells, Mcl-1 degradation was found to be independent of the GSK3-mediated pathway, providing a parallel to emerging findings showing that Mcl-1 degradation through this pathway is lost in many different types of cancer. Findings in Mcl-1-transfected CHO cells corroborated those in BL41-3 cells in that the GSK3-targeted phosphodegron did not play a major role in Mcl-1 degradation, and a phosphomimetic T163E mutation resulted in marked Mcl-1 stabilization. TPA-treated BL41-3 cells, in addition to exhibiting Thr 163 phosphorylation and Mcl-1 stabilization, exhibited an ∼10-fold increase in resistance to multiple chemotherapeutic agents, including Ara-C, etoposide, vinblastine, or cisplatin. In these cancer cells in which Mcl-1 degradation is not dependent on the GSK3/phosphodegron-targeted pathway, ERK activation and Thr 163 phosphorylation are associated with pronounced Mcl-1 stabilization and drug resistance - effects that can be suppressed by inhibition of ERK activation.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge