English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Biological Chemistry 2007-Dec

Three-dimensional reconstruction using transmission electron microscopy reveals a swollen, bell-shaped structure of transient receptor potential melastatin type 2 cation channel.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Yuusuke Maruyama
Toshihiko Ogura
Kazuhiro Mio
Shigeki Kiyonaka
Kenta Kato
Yasuo Mori
Chikara Sato

Keywords

Abstract

Transient receptor potential melastatin type 2 (TRPM2) is a redox-sensitive, calcium-permeable cation channel activated by various signals, such as adenosine diphosphate ribose (ADPR) acting on the ADPR pyrophosphatase (ADPRase) domain, and cyclic ADPR. Here, we purified the FLAG-tagged tetrameric TRPM2 channel, analyzed it using negatively stained electron microscopy, and reconstructed the three-dimensional structure at 2.8-nm resolution. This multimodal sensor molecule has a bell-like shape of 18 nm in width and 25 nm in height. The overall structure is similar to another multimodal sensor channel, TRP canonical type 3 (TRPC3). In both structures, the small extracellular domain is a dense half-dome, whereas the large cytoplasmic domain has a sparse, double-layered structure with multiple internal cavities. However, a unique square prism protuberance was observed under the cytoplasmic domain of TRPM2. The FLAG epitope, fused at the C terminus of the ADPRase domain, was assigned by the antibody to a position close to the protuberance. This indicates that the agonist-binding ADPRase domain and the ion gate in the transmembrane region are separately located in the molecule.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge