English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Neurochemistry 2009-Dec

Thrombin potentiates D-aspartate efflux from cultured astrocytes under conditions of K+ homeostasis disruption.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Erika Vázquez-Juárez
Reyna Hernández-Benítez
Alejandra López-Domínguez
Herminia Pasantes-Morales

Keywords

Abstract

Thrombin levels increase in brain during ischemia and hemorrhagic episodes, and may contribute to excitotoxic neural damage. This study examined the effect of thrombin on glutamate efflux from rat cortical cultured astrocytes using 3H-D-aspartate as radiotracer. The glutamate efflux was initiated by addition of 100 mM K+ plus 1 mM ouabain (K/O) to replicate extracellular and intracellular ionic changes that occur during cerebral ischemia. Upon exposure to K/O, astrocytes swelled slowly and progressively with no evidence of volume regulation. The K/O-induced swelling was inhibited by 65% with bumetanide and 25% with BaCl2, suggesting contribution of Na+/K+/Cl) co-transporter and Kir channels. K/O-elicited 3H-D-aspartate that consisted of two phases. The first transient component of the release corresponded to 13.5% of total 3H-D-aspartate loaded. It was markedly reduced (61%) by the glutamate transporter blocker DL-threo-b-benzyloxyaspartic acid and weakly inhibited (21%) by the volume-sensitive anion channel blocker 4-[(2-Butyl-6,7-dichloro-2-cyclopentyl-2,3-di-hydro-1oxo-1H-inden-5-yl)oxy] butanoic acid (DCPIB). During the second sustained phase of release, cells lost 45% of loaded of 3H-D-aspartate via a mechanism that was insensitive to DL-threo-b-benzyloxyaspartic acid but nearly completely suppressed by DCPIB. Thrombin (5 U/mL) had only marginal effects on the first phase but strongly potentiated(more than two-fold) 3H-D-aspartate efflux in the second phase. The effect of thrombin effect was proportional to cell swelling and completely suppressed by DCPIB. Overall our data showed that under K/O swelling conditions, thrombin potently enhance glutamate release via volume-sensitive anion channel. Similar mechanisms may contribute to brain damage in neural pathologies which are associated with cell swelling, glutamate efflux and increased thrombin levels.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge