English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Cellular Physiology and Biochemistry 2018

Thymoquinone Attenuates Myocardial Ischemia/Reperfusion Injury Through Activation of SIRT1 Signaling.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Yunyang Lu
Yingda Feng
Dan Liu
Zhiran Zhang
Kai Gao
Wei Zhang
Haifeng Tang

Keywords

Abstract

OBJECTIVE

Myocardial ischemia/reperfusion (MI/R) injury is a leading factor responsible for damage in myocardial infarction, resulting in additional injury to cardiac tissues involved in oxidative stress, inflammation, and apoptosis. Thymoquinone (TQ), the main constituent of Nigella sativa L. seeds, has been reported to possess various biological activities. However, few reports regarding myocardial protection are available at present. Therefore, this study was conducted aiming to investigate the protective effect of TQ against MI/R injury and to clarify its potential mechanism.

METHODS

MI/R injury models of isolated rat hearts and neonatal rat cardiomyocytes were established. The Langendorff isolated perfused heart system, triphenyltetrazolium chloride staining, gene transfection, TransLaser scanning confocal microscopy, and western blotting were employed to evaluate the cardioprotection effect of TQ against MI/R injury.

RESULTS

Compared with the MI/R group, TQ treatment could remarkably improve left ventricular function, decrease myocardial infarct size and production of lactate dehydrogenase (LDH), and attenuate mitochondrial oxidative damage by elevating superoxide dismutase (SOD) activity and reducing production of hydrogen peroxide (H2O2) and malonaldehyde (MDA). Moreover, the cardioprotective effect of TQ was accompanied by up-regulated expression of SIRT1 and inhibition of p53 acetylation. Additionally, TQ treatment could also enhance mitochondrial function and reduce the number of apoptotic cardiomyocytes. Nonetheless, the cardioprotective effect of TQ could be mitigated by SIRT1 inhibitor sirtinol and SIRT1 siRNA, respectively, which was achieved through inhibition of the SIRT1 signaling pathway.

CONCLUSIONS

The findings in this study demonstrate that TQ is efficient in attenuating MI/R injury through activation of the SIRT1 signaling pathway, which can thus reduce mitochondrial oxidative stress damage and cardiomyocyte apoptosis.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge