English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Biological Chemistry 2013-Feb

Tim50 in Trypanosoma brucei possesses a dual specificity phosphatase activity and is critical for mitochondrial protein import.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Melanie R Duncan
Marjorie Fullerton
Minu Chaudhuri

Keywords

Abstract

In eukaryotes, proteins are imported into mitochondria via multiprotein translocases of the mitochondrial outer and inner membranes, TOM and TIM, respectively. Trypanosoma brucei, a hemoflagellated parasitic protozoan and the causative agent of African trypanosomiasis, imports about a thousand proteins into the mitochondrion; however, the mitochondrial protein import machinery in this organism is largely unidentified. Here, we characterized a homolog of Tim50 that is localized in the mitochondrial membrane in T. brucei. Similar to Tim50 proteins from fungi and mammals, Tim50 in T. brucei (TbTim50) possesses a mitochondrial targeting signal at its N terminus and a C-terminal domain phosphatase motif at its C terminus. Knockdown of TbTim50 reduced cell growth and inhibited import of proteins that contain N-terminal targeting signals. Co-immunoprecipitation analysis revealed that TbTim50 interacts with TbTim17. Unlike its fungal counterpart but similar to the human homolog of Tim50, recombinant TbTim50 possesses a dual specificity phosphatase activity with a greater affinity for protein tyrosine phosphate than for protein serine/threonine phosphate. Mutation of the aspartic acid residues to alanine in the C-terminal domain phosphatase motif (242)DXDX(V/T)(246) abolished activity for both type of substrates. TbTim50 knockdown increased and its overexpression decreased the level of voltage-dependent anion channel (VDAC). However, the VDAC level was unaltered when the phosphatase-inactive mutant of TbTim50 was overexpressed, suggesting that the phosphatase activity of TbTim50 plays a role in regulation of VDAC expression. In contrast, phosphatase activity of the TbTim50 is required neither for mitochondrial protein import nor for its interaction with TbTim17. Overall, our results show that TbTim50 plays additional roles in mitochondrial activities besides preprotein translocation.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge