English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Tissue Culture and Biotechnology 2014-Jun

Tissue-Specific Metabolic Profile Study of Moringa oleifera L. Using Nuclear Magnetic Resonance Spectroscopy.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Iqbal Mahmud
Kamal Chowdhury
Arezue Boroujerdi

Keywords

Abstract

Moringa oleifera, an important multipurpose crop, is rich in various phytochemicals: flavonoids, antioxidants, vitamins, minerals and carotenes. The purpose of this study was to profile the groups of metabolites in leaf and stem tissues of M. oleifera. Various sugars, amino acids, and organic acid derivatives were found in all of the M. oleifera tissues with different profiles/peak intensities depending on the tissue. 1D proton nuclear magnetic resonance (NMR) was applied for collecting metabolite spectra. Approximately 30 metabolites with 2 unknown peaks were identified with Chenomx and verified with MMCD databases using carbon data. Among these metabolites, 22 metabolites were identified as common in both leaf and stem tissues. Of the remaining 8 metabolites, 4-aminobutyrate, adenosine, guanosine, tyrosine, and p-cresol were found only in leaf tissues; however, glutamate, glutamine, and tryptophan were found only in stem tissues. Biochemical pathway analysis revealed that 28 identified metabolites were interconnected with 36 different pathways as well as related to different fatty acids and secondary metabolites synthesis biochemical pathways. It is well known that different tissues of M. oleifera have nutritional, medicinal, and therapeutic values; therefore, our main objective is to provide a publicly available M. oliefera tissue specific metabolite database.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge