English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 2003-Mar

Tobacco transgenic lines that express fenugreek galactomannan galactosyltransferase constitutively have structurally altered galactomannans in their seed endosperm cell walls.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
J S Grant Reid
Mary E Edwards
Cathryn A Dickson
Catherine Scott
Michael J Gidley

Keywords

Abstract

Galactomannans [(1-->6)-alpha-D-galactose (Gal)-substituted (1-->4)-beta-D-mannans] are major cell wall storage polysaccharides in the endosperms of some seeds, notably the legumes. Their biosynthesis in developing legume seeds involves the functional interaction of two membrane-bound glycosyltransferases, mannan synthase (MS) and galactomannan galactosyltransferase (GMGT). MS catalyzes the elongation of the mannan backbone, whereas GMGT action determines the distribution and amount of Gal substitution. Fenugreek (Trigonella foenum-graecum) forms a galactomannan with a very high degree of Gal substitution (Man/Gal = 1.1), and its GMGT has been characterized. We now report that the endosperm cell walls of the tobacco (Nicotiana tabacum) seed are rich in a galactomannan with a very low degree of Gal substitution (Man/Gal about 20) and that its depositional time course is closely correlated with membrane-bound MS and GMGT activities. Furthermore, we demonstrate that seeds from transgenic tobacco lines that express fenugreek GMGT constitutively in membrane-bound form have endosperm galactomannans with increased average degrees of Gal substitution (Man/Gal about 10 in T(1) generation seeds and about 7.5 in T(2) generation seeds). Membrane-bound enzyme systems from transgenic seed endosperms form galactomannans in vitro that are more highly Gal substituted than those formed by controls under identical conditions. To our knowledge, this is the first report of structural manipulation of a plant cell wall polysaccharide in transgenic plants via a biosynthetic membrane-bound glycosyltransferase.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge