English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of the American Chemical Society 2018-Nov

Total Synthesis, Biological Evaluation, and Target Identification of Rare Abies Sesquiterpenoids.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Dexter C Davis
Dominic G Hoch
Li Wu
Daniel Abegg
Brandon S Martin
Zhong-Yin Zhang
Alexander Adibekian
Mingji Dai

Keywords

Abstract

Abiespiroside A (1), beshanzuenone C (2), and beshanzuenone D (3) belong to the Abies sesquiterpenoid family. Beshanzue-nones C (2) and D (3) are isolated from the critically endangered Chinese fir tree species Abies beshanzuensis and demon-strated weak inhibiting activity against protein tyrosine phosphatase 1B (PTP1B). We describe herein the first total synthe-ses of these Abies sesquiterpenoids relying on the sustainable and inexpensive chiral pool molecule (+)-carvone. The synthe-ses feature a palladium-catalyzed hydrocarbonylative lactonization to install the 6,6-fused bicyclic ring system and a Dreiding-Schmidt reaction to build the oxaspirolactone moiety of these target molecules. Our chemical total syntheses of these Abies sesquiterpenoids have enabled (i) the validation of beshanzuenone C's weak PTP1B inhibiting potency, (ii) iden-tification of new synthetic analogs with promising and selective protein tyrosine phosphatase SHP2 inhibiting potency, and (iii) preparation of azide-tagged probe molecules for target identification via a chemoproteomic approach. The latter has re-sulted in the identification and evaluation of DNA polymerase epsilon subunit 3 (POLE3) as one of the novel cellular targets of these Abies sesquiterpenoids and their analogs. More importantly, via POLE3 inactivation by probe molecule 29 and knockdown experiment, we further demonstrated that targeting POLE3 with small molecules may be a novel strategy for chemosensitization to DNA damaging drugs such as etoposide in cancer.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge