English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Biology 2018-Aug

Towards a characterisation of the wild legume bitter vetch (Lathyrus linifolius L. (Reichard) Bässler): heteromorphic seed germination, root nodule structure and N-fixing rhizobial symbionts.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
E Dello Jacovo
T A Valentine
M Maluk
P Toorop
L Lopez Del Egido
N Frachon
G Kenicer
L Park
M Goff
V A Ferro

Keywords

Abstract

Lathyrus linifolius L. (Reichard) Bässler (Fabiaceae, bitter vetch) is a nitrogen (N) fixing species. A coloniser of low nutrient (N) soils, it supports biodiversity such as key moth and butterfly species, and its roots are known for their organoleptic and claimed therapeutic properties. Thus, the species has high potential for restoration, conservation, novel cropping and as a model species. The last because of its genetic synteny with important pulse crops. However, regeneration and functional attributes of L. linifolius remain to be characterised. Seeds of L. linifolius were characterised using physical, colorimetric and chemical data. Ultrastructural and functional characterisation of the N-fixing root nodules included immunolabelling with nifH protein antibodies (recognising the N-fixing enzyme, nitrogenase). Endosymbiotic bacteria were isolated from root nodules and characterised phylogenetically using 16S rRNA, nodA and nodD gene sequences. L. linifolius yielded heteromorphic seed of distinct colour classes: green and brown. Seed morphotypes had similar C:N ratios and were equally germinable (ca. 90%) after scarification at differing optimal temperatures (16 and 20 °C). Brown seeds were larger and comprised a larger proportion of the seed batch (69%). L. linifolius root nodules appeared indeterminate in structure, effective (capable of fixing atmospheric N) and having strains very similar to Rhizobium leguminosarum biovar viciae. The findings and rhizobial isolates have potential application for ecological restoration and horticulture using native seeds. Also, the data and rhizobial resources have potential applications in comparative and functional studies with related and socio-economically important crops such as Pisum, Lens and Vicia.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge