English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Toxicology Mechanisms and Methods 2018-Nov

Toxicity and anti-prolific properties of Xysmalobium undulatum water extract during short-term exposure to two-dimensional and three-dimensional spheroid cell cultures.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Carlemi Calitz
Josias H Hamman
Alvaro M Viljoen
Stephen J Fey
Krzysztof Wrzesinski
Chrisna Gouws

Keywords

Abstract

Xysmalobium undulatum (Uzara) is one of the most widely used indigenous traditional herbal remedies in Southern Africa. Commercially available Uzara plant material was used to prepare a crude aqueous extract, of which the toxicity potential was investigated in the hepatic HepG2/C3A cell line in both traditional two-dimensional (2D) and rotating three-dimensional (3D) spheroid cell cultures. These cultures were treated over a period of 4 days at concentrations of 200, 350, 500, and 750 mg/kg plant extract to protein content. Basic physiological parameters of the cell cultures were measured during exposure, including cell proliferation, glucose uptake, intracellular adenosine triphosphate levels, and adenylate kinase release. The results indicated that all physiological parameters monitored were affected in a dose dependent manner, with the highest concentration of Uzara crude water extract (750 mg/kg) resulting in toxicity. Anti-proliferating effects of Uzara crude water extract were observed in both the 2D and 3D cell cultures, with the most pronounced effects at concentrations of 350, 500, and 750 mg/kg. Discrepancies between results obtained from the 2D and 3D cell culture models may be attributed to the type of repair system that is initiated upon exposure, depending on where cells are within the cell cycle. DNA repair systems differ in cells within the G1 phase and non-diving cells, (i.e. cells found predominantly in in vitro 3D and the in vivo situation).

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge