English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Nan fang yi ke da xue xue bao = Journal of Southern Medical University 2007-Jul

Toxicity evaluation of chicken calamus keratin conduit as a tissue-engineering scaffold biomaterial.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Wei-ren Dong
Bing-lei Zhao
Ying-qing Xiao
Xin-xia Qiu
Ying-hua Chen
Zhong-zhi Zou

Keywords

Abstract

OBJECTIVE

To evaluate the toxicity of chicken calamus keratin (CCK) conduit as a tissue-engineered scaffold material.

METHODS

The chemical composition of the leaching solution of CCK was determined by means of ultraviolet spectrometry, and the toxic effects of the solution was evaluated by skin sensitization test in rats, intracutaneous stimulation test in rabbits, acute systemic toxicity test in mice, and cytotoxicity test in L929 cells.

RESULTS

The leaching solution of CCK consisted mainly of middle-molecular-weight peptides with a small quantity of macromolecular proteins. Skin sensitization test in rats showed that application of the CCK leaching solution caused no obvious skin reddening, regional edema, or skin necrosis. Intracutaneous injection of the leaching solution in rabbits did not induce obvious skin stimulation manifested by intradermal erythema or edema. In acute systemic toxic test, administration of the leaching solution in mice caused no death, organ dysfunction, cyanosis, tremor, severe peritoneal irritation, ptosis, or dyspnoea. In vitro cytotoxicity test indicated that the cell toxicity of the CCK leaching solution was approximately at 0 level.

CONCLUSIONS

CCK contained in the treated chicken calamus easily undergoes hydrolysis to release mainly some peptides which do not induce obvious toxic effects, suggesting the safe potential applications of CCK conduit as a tissue-engineering biomaterial.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge