English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Archives of Toxicology 2017-May

Toxicokinetics and internal exposure of acrylamide: new insight into comprehensively profiling mercapturic acid metabolites as short-term biomarkers in rats and Chinese adolescents.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Qiao Wang
Xinyu Chen
Yiping Ren
Qing Chen
Zhen Meng
Jun Cheng
Yunyan Zheng
Weijiang Zeng
Qingning Zhao
Yu Zhang

Keywords

Abstract

Acrylamide is classified as a probable carcinogen to humans and generated from Maillard reaction. Currently, the short-term exposure to acrylamide was evaluated via external diet sources in vitro or two main mercapturic acid metabolites: N-acetyl-S-(2-carbamoylethyl)-L-cysteine (AAMA) and N-acetyl-S-(2-carbamoyl-2-hydroxyethyl)-L-cysteine (GAMA) in vivo. In the present work, we comprehensively profiled four mercapturic acid metabolites and evaluated their internal exposure in rats and Chinese adolescents. The cumulative excretion of mercapturic acid metabolites contributes 38.4-73.0 and 43.8-63.6 % of total in vivo metabolites of acrylamide in male and female rats, respectively, when 1, 10, and 50 mg/kg bw of acrylamide were orally administered. Toxicokinetic study revealed that the conversion of acrylamide into glycidamide and glutathione coupling process is highly related to the gender and oral gavage dose via evaluating kinetic parameters, accumulative excretion percentages, and molar ratios of oxidative to reductive metabolism. In human study, a total of 101 Chinese adolescents (41 men and 60 women) were enrolled and served with a meal of potato chips, corresponding to a single-dose (12.6 μg/kg bw) exposure to acrylamide. Toxicokinetic work showed that AAMA is an early and predominant metabolite appearing as a biomarker in urine. N-acetyl-S-(2-carbamoylethyl)-L-cysteine-sulfoxide (AAMA-sul), an oxidative product from AAMA, exhibits a higher peak concentration than GAMA and N-acetyl-S-(1-carbamoyl-2-hydroxyethyl)-L-cysteine (iso-GAMA) during the whole 48-h toxicokinetic period. The internal exposure via four mercapturic acid metabolites is associated with the gender and body mass index characteristics. Thus, current study aims at mercapturic acid metabolites as urinary biomarkers and provides comprehensive insights into the short-term internal exposure to acrylamide.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge