English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Nutrients 2019-Mar

Trans-Cinnamic Acid Stimulates White Fat Browning and Activates Brown Adipocytes.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Nam Kang
Sulagna Mukherjee
Jong Yun

Keywords

Abstract

Recently, pharmacological activation of brown fat and induction of white fat browning (beiging) have been considered promising strategies to treat obesity. To search for natural products that could stimulate the process of browning in adipocytes, we evaluated the activity of trans-cinnamic acid (tCA), a class of cinnamon from the bark of Cinnamomum cassia, by determining genetic expression using real time reverse transcription polymerase chain reaction (RT-PCR) and protein expression by immunoblot analysis for thermogenic and fat metabolizing markers. In our study tCA induced brown like-phenotype in 3T3-L1 white adipocytes and activated HIB1B brown adipocytes. tCA increased protein content of brown-fat-specific markers (UCP1, PRDM16, and PGC-1α) and expression levels of beige-fat-specific genes (Cd137, Cidea, Cited1, Tbx1, and Tmen26) in 3T3-L1 white adipocytes, as well as brown-fat-specific genes (Lhx8, Ppargc1, Prdm16, Ucp1, and Zic1) in HIB1B brown adipocytes. Furthermore, tCA reduced expression of key adipogenic transcription factors C/EBPα and PPARγ in white adipocytes, but enhanced their expressions in brown adipocytes. In addition, tCA upregulates lipid catabolism. Moreover, mechanistic study revealed that tCA induced browning in white adipocytes by activating the β3-AR and AMPK signaling pathways. tCA can induce browning, increase fat oxidation, reduce adipogenesis and lipogenesis in 3T3-L1 adipocytes, and activate HIB1B adipocytes, suggesting its potential to treat obesity.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge