English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Metabolic Engineering 2007-Mar

Transcription factor Agamous-like 12 from Arabidopsis promotes tissue-like organization and alkaloid biosynthesis in Catharanthus roseus suspension cells.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Grégory Montiel
Christian Breton
Martine Thiersault
Vincent Burlat
Christian Jay-Allemand
Pascal Gantet

Keywords

Abstract

In Catharanthus roseus, monomeric terpenoid indole alkaloids (TIAs) are biosynthesized in specific tissues, particularly in roots, but failed to be produced by in vitro undifferentiated suspension cells. In this paper, we describe the impact of the root-specific MADS-box transcription factor Agamous-like 12 (Agl12) from Arabidopsis thaliana on the differentiation of suspension cells from C. roseus. The expression of Agl12 is sufficient to promote an organization of suspension cells into globular parenchyma-like aggregates but is insufficient by itself to induce complete morphological root differentiation. Agl12 expression selectively increases the expression of genes encoding enzymes involved in the early biosynthesis steps of the terpenic precursor of alkaloids. The transgenic cell lines expressing Agl12 produced significant amounts of ajmalicine, an antihypertensive TIA that normally accumulates in C. roseus roots. The present paper indicates that transcription factors involved in tissue or organ differentiation may constitute new metabolic engineering tools that could help to design in vitro cultured cells able to produce specific valuable secondary metabolites.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge