English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Biology 2017-Sep

Transcriptome analysis, using RNA-Seq of Lomandra longifolia roots infected with Phytophthora cinnamomi reveals the complexity of the resistance response.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
M T Islam
H I Hussain
J E Rookes
D M Cahill

Keywords

Abstract

The plant pathogen Phytophthora cinnamon the causal agent of disease in numerous species, is a major threat to natural vegetation and has economic impacts in agriculture. The pathogen principally invades the root system, which, in susceptible species, is rapidly colonised and functionally destroyed. Few species are resistant, however, where resistance is expressed the pathogen is restricted to small, localised lesions. The molecular mechanisms that underpin this response in resistant species are not well understood. Lomandra longifolia, an Australian native species, is highly resistant to P. cinnamomi. In an earlier study, we showed induction of resistance-related components such as callose, lignin and hydrogen peroxide (H2 O2 ) in L. longifolia roots that had been inoculated with P. cinnamomi. Here, in order to further identify, during the very early stages of infection, the molecular components and regulatory networks that may trigger resistance, a comprehensive root transcriptome analysis was performed using next generation sequencing. Overall, 18 cDNA libraries were produced generating 52.8 GB 126 base pair reads, which were de novo assembled into contigs. Differentially expressed genes (DEGs) were identified allowing the identification of infection-responsive candidate genes that were putatively related to resistance, and from this set ten were selected for qRT-PCR to validate the RNA-Seq expression value. Further analysis of individual candidates revealed that many were involved in PAMP-triggered immunity (PTI; pattern recognition receptors, glutathione S-transferase, callose synthases, pathogenesis-related protein-1, mitogen activated protein kinases) and effector-triggered immunity (ETI) (NBS-LRR, signalling genes, transcription factors and anti-pathogenic compound synthase genes). As these candidate genes or mediated components activate different defence signalling systems, they may have potential for investigation of novel approaches to disease control and in transgenic approaches for improvement, in susceptible species, of resistance to P. cinnamomi.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge