English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of the Science of Food and Agriculture 2017-Aug

Transgenic modification of potato pectic polysaccharides also affects type and level of cell wall xyloglucan.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Jie-Hong Huang
Rui Jiang
Anne Kortstee
Dianka Ct Dees
Luisa M Trindade
Harry Gruppen
Henk A Schols

Keywords

Abstract

BACKGROUND

Genes encoding pectic enzymes were introduced into wild-type potato Karnico. Cell wall materials were extracted from Karnico and transgenic lines expressing β-galactosidase (β-Gal-14) or rhamnogalacturonan lyase (RGL-18). Pectic polysaccharides from the β-Gal-14 transgenic line exhibited rhamnogalacturonan-I structural elements with shorter galactan side chains, whereas the RGL-18 transgenic line had less rhamnogalacturonan-I structures than Karnico. Xyloglucan in primary cell walls interacts with pectin and other cell wall polysaccharides and controls cell growth.

RESULTS

Xyloglucan extracts from transgenic lines had different levels of monosaccharides compared to wild-type. Most XXGG-type xyloglucans from Karnico and RGL-18 alkali-extractable extracts predominantly consisted of XXGG and XSGG building blocks. Karnico and RGL-18 4 mol L-1 extracts had small proportions of the XXXG-type xyloglucan, whereas β-Gal-14 extracts also contained the XXXG-type xyloglucan. The peak ratios of XSGG/XXGG were 1.9, 2.4 and 1.1 for 4 mol L-1 extracts of Karnico, RGL-18 and β-Gal-14 lines, respectively.

CONCLUSIONS

After transgenic modification on pectin, the xyloglucan building blocks may have been changed. The β-Gal-14 lines mostly present XXXG-type repeating units instead of the XXGG-type in 4 mol L-1 extracts. The ratio of XSGG/XXGG repeating units also changed, indicating that the transgenic modification of pectin altered xyloglucan structure during plant development. © 2016 Society of Chemical Industry.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge