English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Brain Research 1999-Nov

Transgenic rescue of SNAP-25 restores dopamine-modulated synaptic transmission in the coloboma mutant.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
S C Steffensen
S J Henriksen
M C Wilson

Keywords

Abstract

Many of the molecular components constituting the exocytotic machinery responsible for neurotransmitter release have been identified, yet the precise role played by these proteins in synaptic transmission, and their impact on neural function, has not been resolved. The mouse mutation coloboma is a contiguous gene defect that leads to electrophysiological and behavioral deficits and includes the gene-encoding SNAP-25, an integral component of the synaptic vesicle-docking/fusion core complex. The involvement of SNAP-25 in the hyperactive behavior of coloboma mice, which can be ameliorated by the indirect dopaminergic agonist, amphetamine, has been demonstrated by genetic rescue using a SNAP-25 transgene. Coloboma mice also exhibit increased recurrent inhibition, reduced theta rhythm by tail-pinch and reduced long-term potentiation in the hippocampal dentate gyrus that, as the hyperkinesis seen in these mutants suggests, may reflect impaired monoaminergic modulation. We sought to identify neurophysiological correlates of the rescued hyperactivity within hippocampal synaptic circuitry of SNAP-25 transgenic coloboma mutant mice. In contrast to the differences between coloboma and wild-type mice, there was no significant difference in the duration or amplitude of theta rhythmic activity (4-6 Hz) induced by tail-pinch (10 s), afferent-evoked field potentials, or paired-pulse responses recorded in the dentate gyrus of SNAP-25 transgenic coloboma and wild-type mice. Amphetamine (3.0 mg/kg, i.p.) produced disinhibition of dentate paired-pulse responses in both SNAP-25 transgenic and wild-type mice but increased inhibition in non-transgenic coloboma mice. These findings support the hypothesis that alteration of monoaminergic neurotransmission, which can be reversed by the indirect agonist, amphetamine, is particularly sensitive to alterations in the expression of SNAP-25.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge