English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Brain research. Developmental brain research 1991-Nov

Transneuronal degeneration of thalamic neurons following deafferentation: quantitative studies using [3H]thymidine autoradiography.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
L J Oh
G Kim
J Yu
R T Robertson

Keywords

Abstract

Transneuronal degeneration of thalamic neurons following partial deafferentation was studied using [3H]thymidine autoradiography. Timed-pregnant female Sprague-Dawley rats received systemic injections of [3H]thymidine on embryonic day (E) 13, 14 and/or 15. On the day of birth, pups were anesthetized by hypothermia and subjected to unilateral enucleation, unilateral removal of the inferior colliculus or sham lesion. Animals were sacrificed on postnatal day 10 or 30 and the brains processed for autoradiography. Material from sham-lesioned animals demonstrates that neurons destined for the dorsal lateral geniculate nucleus (LGd) undergo final mitoses on E13, 14 and 15. Neurons in the ventral medial geniculate nucleus (MGv) undergo final mitoses on E13 and 14. Thirty days following neonatal unilateral eye removal, the contralateral LGd displays a loss of approximately 30-35% of [3H]thymidine labeled neurons. Neonatal unilateral removal of the inferior colliculus results in a loss of approximately 30-40% of labeled neurons in MGv. For both LGd and MGv, shorter survival times reveal less severe cell loss. Late generated (E15) LGd neurons show less severe loss following enucleation than do earlier generated neurons. These results document the degree of cell loss in sensory thalamic nuclei following deafferentation and demonstrate that [3H]thymidine autoradiography provides a useful quantitative method for assessing anterograde transneuronal cell loss in targeted populations of neurons in the developing central nervous system.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge