English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 1979-Sep

Transport of nitrogen in the xylem of soybean plants.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
P R McClure
D W Israel

Keywords

Abstract

Experiments were conducted to characterize the distribution of N compounds in the xylem sap of nodulated and nonnodulated soybean plants through development and to determine the effects of exogenous N on the distribution of N compounds in the xylem. Xylem sap was collected from nodulated and nonnodulated greenhouse-grown soybean plants (Glycine max [L.] Merr. "Ransom") from the vegetative phase to the pod-filling phase. The sum of the nitrogen in the amino acid, nitrate, ureide (allantoic acid and allantoin), and ammonium fractions of the sap from both types of plants agreed closely with total N as assayed by a Kjeldahl technique. Sap from nodulated plants supplied with N-free nutrient solution contained seasonal averages of 78 and 20% of the total N as ureide-N and amino acid-N, respectively. Sap from nonnodulated plants supplied with a 20 millimolar KNO(3) nutrient solution contained seasonal averages of 6, 36, and 58% of total N as ureide-N, amino acid-N, and nitrate-N, respectively. Allantoic acid was the predominant ureide in the xylem sap and asparagine was the predominant amino acid. When well nodulated plants were supplied with 20 millimolar KNO(3), beginning at 65 days, C(2)H(2) reduction (N(2) fixation) decreased relative to nontreated plants and there was a concomitant decrease in the ureide content of the sap. A positive correlation (r = 0.89) was found between the ureide levels in xylem sap and nodule dry weights when either exogenous nitrate-N or urea-N was supplied at 10 and 20 millimolar concentrations to inoculated plants. The results demonstrate that ureides play a dominant role in N transport in nodulated soybeans and that the synthesis of ureides is largely dependent upon nodulation and N(2) fixation.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge